JAX处于函数变换(function transformations)和科学计算的交界处,所以也有能力训练神经网络模型,但不止于训练。JAX最初由谷歌大脑团队的 Matt Johnson、Roy Frostig、Dougal Maclaurin 和 Chris Leary 等人发起,借助 Autograd 的更新版本,并且结合了 XLA,可对 Python 程序与 NumPy 运算执行自动微分,支持循环、分支、递归、闭包函数求导,也可以求三阶导数;依赖于 XLA,JAX 可以在 GPU 和 TPU 上编译和运行 NumPy 程序;通过 grad,可以支持自动模式反向传播和正向传播,且二者可以任意组合成任何顺序。
数据统计
数据评估
关于JAX特别声明
本站1001导航提供的JAX都来源于网络,不保证外部链接的准确性和完整性,同时,对于该外部链接的指向,不由1001导航实际控制,在2024-03-28 22:54收录时,该网页上的内容,都属于合规合法,后期网页的内容如出现违规,可以直接联系网站管理员进行删除,1001导航不承担任何责任。
相关导航
暂无评论...